GRE-2, Geometry

Types of polygons

Sides	Name	Degrees
3	Triangle	180
4	Quadrilateral	360
5	Pentagon	540
6	Hexagon	(Add 180 for each side)
7	Heptagon	
8	Octagon	
9	Nonagon	
10	Decagon	
n	n-gon	$180(n-2)$

The external angles always add up to 360

Types of triangles

Equal angles open to equal sides
A larger angle opens to a longer side
All sides / angles different = Scalene
At least two sides / angles same = Isosceles
All three sides / angles equal = Equilateral or regular

Largest angle	Type
<90	Acute
$=90$	Right
>90	Obtuse

The triangle inequality

"The shortest distance between two points is a straight line"

$$
\begin{aligned}
& a<b+c \\
& b<a+c \\
& c<a+b
\end{aligned}
$$

Alternatively: If a and b are known, then $|a-b|<c<a+b$

Types of quadrilaterals

Parallelograms

- Two pairs of parallel sides
- $A=b h$, where b and h have same requirements as triangle.
- Diagonals bisect each other
- Right angles $=$ Rectangle
- Diagonals are equal
- Equal sides = Rhombus ("Diamond")
- Diagonals are perpendicular
- Alt $A=\frac{1}{2} d_{1} d_{2}$ (diagonals)
- Square $=$ Rectangular rhombus

Trapezoid

- One pair of parallel sides
- $A=\bar{b} h$, where $\bar{b}=$ average of bases

Optimizing rectangles

The more squarier, the more area.
The longer and skinnier, the more the perimeter.

Intersecting lines and angles

- Any two intersecting lines
- Adjacent angles supplementary (add to 180)
- "Opposite" (vertical) angles are equal
- Two parallel lines with transversal
- The four acute angles are equal, and the four obtuse angles are equal
- The acute and obtuse angles are supplementary
- If the transversal is almost perpendicular, "slant" it for clarity
- The same rules apply to parallel sides of a parallelogram / trapezoid

Three dimensions

Dimensionality

$1 \mathrm{D}=$ "Linear". Length, width, height, diagonal, perimeter, circumference, etc. (string)
$2 \mathrm{D}=$ Area (paint)
$3 \mathrm{D}=$ Volume (space)
When you multiply measurements, you add their dimensions.
$1 \mathrm{D} \times 1 \mathrm{D}=2 \mathrm{D}$
$1 D \times 2 D=3 D$

Box shapes

Base	\times height	$=$
Perimeter $/$ circumference (1D)	\times height (1D)	$=$ Lateral surface area (2D)
Area (2D)	\times height (1D)	$=$ Volume (3D)

The "height" must always, always, ALWAYS be perpendicular to the base!!!

Not tested

- Pyramids
- Cones
- Spheres
- Yaaayyyyyy!

Visualizing

Draw shapes "straight on"
If shape is complex, draw from two or three directions
Identify measurements in common between views.

$$
x^{2}+y^{2}+z^{2}=d^{2}
$$

Scaling

Similar figures:
Let $d=$ linear distance, $A=$ Area, $V=$ Volume

