GRE-2, Geometry

Types of polygons

Sides	Name	Degrees
3	Triangle	180
4	Quadrilateral	360
5	Pentagon	540
6	Hexagon	(Add 180 for each side)
7	Heptagon	
8	Octagon	
9	Nonagon	
10	Decagon	
п	<i>n</i> -gon	180(<i>n</i> – 2)

The external angles always add up to 360

Types of triangles

Equal angles open to equal sides A larger angle opens to a longer side

All sides / angles different = Scalene At least two sides / angles same = Isosceles All three sides / angles equal = Equilateral or regular

Largest angle	Туре
< 90	Acute
= 90	Right
> 90	Obtuse

The triangle inequality

"The shortest distance between two points is a straight line"

Alternatively: If a and b are known, then |a-b| < c < a+b

Types of quadrilaterals

Parallelograms

- Two pairs of parallel sides
- A = bh, where b and h have same requirements as triangle.
- Diagonals bisect each other
- Right angles = Rectangle
 - Diagonals are equal
- Equal sides = Rhombus ("Diamond")
 - Diagonals are perpendicular
 - Alt $A = \frac{1}{2}d_1d_2$ (diagonals)
 - Square = Rectangular rhombus

Trapezoid

- One pair of parallel sides
- $A = \overline{b}h$, where \overline{b} = average of bases

Optimizing rectangles

The more squarier, the more area. The longer and skinnier, the more the perimeter.

Intersecting lines and angles

- Any two intersecting lines
 - Adjacent angles supplementary (add to 180)
 - "Opposite" (vertical) angles are equal
- Two parallel lines with transversal
 - The four acute angles are equal, and the four obtuse angles are equal
 - The acute and obtuse angles are supplementary
 - If the transversal is almost perpendicular, "slant" it for clarity
 - The same rules apply to parallel sides of a parallelogram / trapezoid

Three dimensions

Dimensionality

1D = "Linear". Length, width, height, diagonal, perimeter, circumference, etc. (string)
2D = Area (paint)
3D = Volume (space)

When you multiply measurements, you add their dimensions. $1D \times 1D = 2D$ $1D \times 2D = 3D$

Box shapes

Base	× height	=
Perimeter / circumference (1D)	\times height (1D)	= Lateral surface area (2D)
Area (2D)	\times height (1D)	= Volume (3D)

The "height" must always, always, ALWAYS be perpendicular to the base!!!

Not tested

- Pyramids
- Cones
- Spheres
- Yaaayyyyyy!

Visualizing

Draw shapes "straight on" If shape is complex, draw from two or three directions Identify measurements in common between views.

The 3D Pythagorean Theorem

 $x^2 + y^2 + z^2 = d^2$

Scaling

Similar figures: Let d = linear distance, A = Area, V = Volume

